Gender Discrimination and Harassment at Work Place: Problems and it's Possible Solutions

Ankita Pathak* Prof. (Dr.) Sunil Mishra**

ABSTRACT

Gender discrimination is one of the most controversial and emotive aspects of employment in organizations. Various obstacle for women starts from the process of recruitment, internal biasness, depersonalization, lack of mentor and role model, counterproductive behavior, different standard for performance evaluation in promotion, biased rating and testing system, lack of leader and long working hour for advancement, unequal pay barrier for same job, sign of racism, masculine and feministic etc. This research attempts to exhibits problem faced by women at work place and measure the unseen glass wall through which it can be broken. Hence, to know the perception for gender discrimination and harassment at work place the research was applied on 300 women employees between ages of 26 to 55 working in various corporate sectors. SPSS v24.0 was used for further analysis on Data. The Cronbach's alpha value has come out as 0.851 for overall items, a scale is reliable if its Cronbach's alpha value is equal or above the value of 0.70 (Ozdogan & Tuzun, 2007). By the results, it has been determined that 14 factors has emerged which is responsible for gender discrimination and harassment at work place through factor analysis. Further, multiple regression analysis is also conducted. Therefore, this paper presents a comprehensive diagnosis of gender discrimination, the factors causing the discrimination & suggestions to improve them. To overcome from these problem organizations should conduct awareness program which would change informal culture. Women should be encouraged to adopt masculine attribute and build reputation by commitment in work. Women should self monitor themselves regularly and senior should mentor them and work for their career advancement.

Keywords: Gender, Discrimination, Career, Advancement, Women, Barrier, Masculine.

INTRODUCTION

With modernization standard of living has changed, but the assumption and problems for the women are same. No change has been found in the status of the women. Women today are facing more problems in their social and career life. Society acts as a barrier in achieving higher career goals and has seen women as unemployed, spends most of her time in home and deals with household affairs. Women are bound to fulfill family responsibility and social obligation. Society doesn't allow women to think beyond that.

According to Indian belief society has divided the work and according to gender; responsibility are given. Women need to fulfill family responsibility where as men will do outside work and take major decision. Women need to sacrifice their life, career goals for the sake of family and due to fear of society. After fighting against the society women to enter into male dominated world to compete with them and achieve their career goals. Even the corporate sector doesn't give equal opportunity to women. Organization consider men to be strong and committed where as women are seen as weak and dependent. Jobs like nurse, teacher and secretary are given to women where as managers and executive positions are reserved for the men. With the time men are entering into female orientated jobs and are reaching at heights but a male dominated job doesn't welcome women with red carpet. Organization still favours men rather than female but it is not possible for organization to be successful without women power and half resources.

^{*} Ph.D. Scholar, Pacific University, Udaipur.

^{**} Professor and HOD, Oriental College of Management, Bhopal

WOMEN EMPLOYMENT IN INDIA

Indian economy has gone through a substantial transformation since independence. Agriculture was only the source of occupation but with the liberalization the GDP has shown a remarkable change. Poverty reduction strategy were implemented which lead to equality in society. It is immemorial that services rendered by women were not values. Women are generally restricted in their family responsibility which acts as a barrier in their growth. Most of the women in India contribute in the economy by various activities like handicraft, stitching, and household industry along with that perform the daily household work but still they are not allowed to take decision in the family as male domination still exist in the Indian society.

There are estimate that over 90% of working women are involved in informal sector which are not included in statistic. Household work perform by them are not included but the actual labour force participation rate of women is higher than calculated data. Women have started entering into the formal sector. They are placed at entry level position even though having the caliber to handle higher level position. Women with same qualification, similar position earn only 80% of what a male gets. The status has changed but still its far to have equality to men. Women have become aware of their right of equality, right to work, equal treatment in society and decision making. Along with the family responsibility they are performing their career responsibility efficiently. Women have started focusing on their career advancement but still imbalance exists in empowerment of women. They have entered into every sector and have made a place in their field from politics to astronomy but still they are exploited mentally, sexually, and physically in organization.

LITERATURE REVIEW

Attitude of the society towards women have created a prejudice in the mind of recruiter. It start from the recruitment process and ends at performance evaluation and promotion. There is injustice in case of recruitment, compensation, training and appraisals. Employers consider women to be lesser careers orientated and are offered job with less responsibility even though they are highly qualified. Lack of job opportunity, act as a barrier for the women growth in corporate sector. They are taken for granted by their peer, superior and are cemented at middle or lower level in the organization.

According to Delgado and Canabal (2006) jobs are classified on the basis of gender. It leads to segregation of job. When women enter into male segregated jobs they are being harassed. Women are expected to carry family responsibility along with their jobs. Still after handling double responsibility women have shown their caliber. Ahmad and Aminah (2007) stated that two third of women leave their career for the sake of child care as they don't get support from family and spouse. Lack of support from supervisor prevents Women to cope with conflict; it's the women who handle the double burden as Men don't share responsibility of the house work.

Kotti (2016) analyze that more number of women are studying management but only few are working at managerial position. Hierarchy segregation acts as obstacles for women which stops them in approaching management position. Women faces no bars till they reaches at the middle level management but later they get stuck there. Organization doesn't favours women for higher position. Only 27 women are holding leading positions among fortune 500 companies. Lyness and Heilman (2006) found that with 448 upper levels employee, women are less likely to be promoted than male and if they are being promoted they have stronger performance rating than men. Shatnait.et,al (2011) analyzed that women are being stopped as they approach towards management position where decisions shows a impact on whole organization.

Jeavons and Sevastos (2002) stated that women are placed at lower position than their qualification. The organizations have glass ceiling which prevent women in growing. Women are not able to work for long hours for liaising and promotions. Due to family responsibility they are not able to mobilize themselves or take job promotion for different city as a result they be at same position. Women don't get equal opportunity and access to organization resources as they are not included in international assignment. Low proportion of women may be due to recruitment policy, commitment and orientation in career on women's part.

Ali (2011) examined the challenges that women are facing in career advancement and found that women are not satisfied with their growth. Work is not being appreciated; it would lead to demotivation and make them feel unworthy and would resign the job. Women don't face any sort of barrier till they reach middle level management. When women with hard work try to step in a higher level, barrier are created by organization, male counterpart and bosses who let them to stick at middle level. Skinner and Pocock (2008) studied the impact of work schedule, working hours and work life conflict on employees and found that work overload effect family as well as work life. Long working hours disturb their personal life. It takes away personal space.

Arulampalamet et. al. (2007) found that pay gap varied largely in higher level position than the lower level. Women working with full efficiency and commitment are likely to receive higher not lower remuneration. Farooq and Sulaiman (2009) states that female are underpaid as compared with their co-men worker and this gape can be eliminated by proper education where proper practical knowledge and skill for performing the job are delivered. Society should invest in the education of women to acquire skills and knowledge which will reduce the pay-gap.

RESEARCH OBJECTIVES

This paper outlines the broad contours of various variables responsible for gender discrimination and the ways by which one can minimize this discrimination. So, the study has been framed to answer and achieve the following objectives:

- 1. Do gender discrimination and harassment exist at work place in Indian corporate?
- 2. To identify the organizational factors which blocked the women advancement?
- 3. To propose feasible suggestion how professional can address gender discrimination.

Based on second objective following hypothesis is developed: Organizational factors would be positively associated with gender discrimination and harassment at work place.

RESEARCH METHODOLOGY

Sample Characteristic: A sample of 300 women working in different private sectors (Education, Banking, Hotel, Manufacturing, Telecom, and Hospital) from the age group of 26 to 55 is taken. The Data collected was subjected to descriptive analysis through SPSS v24.0 software.

Table 1: Demographic Characteristics

Age	Percentage	Sectors	Percentage
26-35	52.7	Banking	16.7
36-45	36.0	Education	17.7
46-55	11.3	Hospital	16.3
Total Expe	erience	Manufacturing	16.3
0-5	33.0	Hotel	16.0
5-10	29.0	Telecom	17.0
>10	38.0	Marital Status	ì
0	related to rimination & t at work place	Unmarried	56.0
Disagree	2.0	Married	44.0
Neutral	3.3	Educational Q	ualification
Agee	84.0	Graduate	28.7
Strongly Agree	10.7	Post Graduate	71.3

Measures: A self administered questionnaire is being developed which include 53 questions to measure the several factors responsible for gender discrimination and harassment at work place. The 14 factors are studied which includes counterproductive behaviour, internal biasness, recognition, salary gap, sexual harassment, corporate climate, promotions and appraisals, recruitment barrier, under estimation of skills, training and development, mentoring and networking, employee addressing issue, exclusionism which leads to gender discrimination and harassment at work.

Procedure: The study was exploratory in nature and leaded us to collect the information from the primary source. Stratified random sampling method was used for selecting the subjects of study. The Data was collected from Ahmedabad and Vadodara. The collected Data was examined through statistical software SPSS v24.0. The completeness and correctness of the questionnaire was examined. Further, the overall Reliability of the data is being checked. Then after exploratory factor analysis has been applied to get various factor which lead to gender discrimination and harassment at work place. Multiple regressions have been applied to check the factor accountable for gender discrimination.

RESULTS AND DISCUSSIONS

To identify key variables of organizational factor having positive impact on gender discrimination and harassment at work place, multivariate regression analysis has been done with the help of SPSS v24.0 software, but firstly the overall reliability of the data was measured in table 2.

Table 2: Reliability Statistics

Cronbach's Alpha	N of Items
0.851	53

To test the reliability, the prepared questionnaire was demonstrated to 300 respondents consisting of woman's working in corporate sector. The Cronbach's alpha covering the overall responses has exceeded the reliability estimates ($\geq=0.70$) recommended by Nunnally (1967), which is considered a good sign of reliability of the questionnaire. In our case the score is 0.851 which is acceptable, so the reliability of the data is met.

As per the objective organizational factors were identified which leads to gender discrimination and harassment at work place with the help of Factor analysis in table 3

Table 3: Factor Analysis

a. Communalities

	Initial	Extraction
OF_1	1.000	.687
OF_2	1.000	.535
OF_3	1.000	.788
OF_4	1.000	.668
OF_5	1.000	.588
OF_6	1.000	.571
OF_7	1.000	.550
OF_8	1.000	.651
OF_9	1.000	.668
OF_10	1.000	.574
OF_11	1.000	.639
OF_12	1.000	.692

OF_13 1.000 .605 OF_14 1.000 .651 OF_15 1.000 .657 OF_16 1.000 .616 OF_17 1.000 .643 OF_18 1.000 .630 OF_19 1.000 .630 OF_21 1.000 .634 OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .637 OF_25 1.000 .677 OF_26 1.000 .613 OF_27 1.000 .613 OF_28 1.000 .613 OF_29 1.000 .638 OF_30 1.000 .638 OF_31 1.000 .638 OF_32 1.000 .637 OF_33 1.000 .638 OF_34 1.000 .626 OF_35 1.000 .637 OF_36 1.000 .637 OF_37 <td< th=""><th></th><th></th><th>1</th></td<>			1
OF_15 1.000 .657 OF_16 1.000 .616 OF_17 1.000 .643 OF_18 1.000 .601 OF_19 1.000 .630 OF_20 1.000 .691 OF_21 1.000 .684 OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .613 OF_26 1.000 .669 OF_27 1.000 .613 OF_28 1.000 .613 OF_29 1.000 .638 OF_30 1.000 .578 OF_31 1.000 .565 OF_33 1.000 .620 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .621 OF_38 1.000 .643 OF_41 1.000 .645 OF_41 <td< td=""><td>OF_13</td><td>1.000</td><td>.605</td></td<>	OF_13	1.000	.605
OF_16 1.000 .616 OF_17 1.000 .643 OF_18 1.000 .601 OF_19 1.000 .630 OF_20 1.000 .691 OF_21 1.000 .684 OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .662 OF_26 1.000 .613 OF_27 1.000 .613 OF_28 1.000 .638 OF_29 1.000 .638 OF_30 1.000 .638 OF_31 1.000 .578 OF_32 1.000 .620 OF_33 1.000 .637 OF_34 1.000 .637 OF_35 1.000 .637 OF_38 1.000 .649 OF_38 1.000 .649 OF_40 1.000 .645 OF_41 <td< td=""><td>OF_14</td><td>1.000</td><td>.651</td></td<>	OF_14	1.000	.651
OF_17 1.000 .643 OF_18 1.000 .601 OF_19 1.000 .630 OF_20 1.000 .691 OF_21 1.000 .684 OF_22 1.000 .656 OF_23 1.000 .657 OF_24 1.000 .677 OF_25 1.000 .6680 OF_26 1.000 .662 OF_27 1.000 .613 OF_28 1.000 .613 OF_29 1.000 .613 OF_30 1.000 .638 OF_31 1.000 .578 OF_32 1.000 .626 OF_33 1.000 .626 OF_34 1.000 .627 OF_35 1.000 .637 OF_36 1.000 .626 OF_37 1.000 .626 OF_38 1.000 .637 OF_38 1.000 .588 OF_40 <t< td=""><td>OF_15</td><td>1.000</td><td>.657</td></t<>	OF_15	1.000	.657
OF_18 1.000 .601 OF_19 1.000 .630 OF_20 1.000 .691 OF_21 1.000 .684 OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .680 OF_26 1.000 .613 OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .613 OF_30 1.000 .638 OF_31 1.000 .638 OF_32 1.000 .626 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .620 OF_37 1.000 .621 OF_38 1.000 .621 OF_38 1.000 .643 OF_41 1.000 .645 OF_42 <td< td=""><td>OF_16</td><td>1.000</td><td>.616</td></td<>	OF_16	1.000	.616
OF_19 1.000 .630 OF_20 1.000 .691 OF_21 1.000 .684 OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .680 OF_26 1.000 .662 OF_27 1.000 .613 OF_28 1.000 .613 OF_28 1.000 .638 OF_29 1.000 .610 OF_30 1.000 .578 OF_31 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .627 OF_36 1.000 .627 OF_37 1.000 .637 OF_38 1.000 .588 OF_39 1.000 .649 OF_40 1.000 .643 OF_41 1.000 .649 OF_42 <td< td=""><td>OF_17</td><td>1.000</td><td>.643</td></td<>	OF_17	1.000	.643
OF_20 1.000 .691 OF_21 1.000 .684 OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .680 OF_26 1.000 .652 OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .638 OF_32 1.000 .656 OF_33 1.000 .626 OF_34 1.000 .626 OF_35 1.000 .626 OF_36 1.000 .627 OF_36 1.000 .626 OF_37 1.000 .626 OF_38 1.000 .621 OF_38 1.000 .649 OF_40 1.000 .645 OF_41 1.000 .649 OF_42 <td< td=""><td>OF_18</td><td>1.000</td><td>.601</td></td<>	OF_18	1.000	.601
OF_21 1.000 .684 OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .680 OF_26 1.000 .662 OF_27 1.000 .613 OF_28 1.000 .613 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .626 OF_33 1.000 .626 OF_34 1.000 .626 OF_35 1.000 .620 OF_35 1.000 .620 OF_36 1.000 .620 OF_37 1.000 .620 OF_38 1.000 .621 OF_37 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .649 OF_42 1.000 .649 OF_43 1.000 .577	OF_19	1.000	.630
OF_22 1.000 .656 OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .680 OF_26 1.000 .562 OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .620 OF_36 1.000 .620 OF_37 1.000 .620 OF_38 1.000 .620 OF_37 1.000 .621 OF_38 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .720 OF_45 <td< td=""><td>OF_20</td><td>1.000</td><td>.691</td></td<>	OF_20	1.000	.691
OF_23 1.000 .637 OF_24 1.000 .677 OF_25 1.000 .680 OF_26 1.000 .562 OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .638 OF_32 1.000 .655 OF_33 1.000 .626 OF_34 1.000 .626 OF_35 1.000 .637 OF_36 1.000 .620 OF_37 1.000 .620 OF_38 1.000 .620 OF_38 1.000 .621 OF_38 1.000 .621 OF_40 1.000 .621 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .720 OF_45 <td< td=""><td>OF_21</td><td>1.000</td><td>.684</td></td<>	OF_21	1.000	.684
OF_24 1.000 .677 OF_25 1.000 .680 OF_26 1.000 .562 OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .638 OF_32 1.000 .638 OF_33 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .620 OF_37 1.000 .637 OF_38 1.000 .637 OF_39 1.000 .649 OF_40 1.000 .641 OF_41 1.000 .649 OF_42 1.000 .656 OF_44 1.000 .720 OF_45 1.000 .577	OF_22	1.000	.656
OF_25 1.000 .680 OF_26 1.000 .562 OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .638 OF_32 1.000 .638 OF_31 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .637 OF_37 1.000 .690 OF_38 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .649 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .720 OF_45 1.000 .577	OF_23	1.000	.637
OF_26 1.000 .562 OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .578 OF_32 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .627 OF_35 1.000 .637 OF_36 1.000 .637 OF_38 1.000 .620 OF_37 1.000 .637 OF_36 1.000 .627 OF_38 1.000 .649 OF_40 1.000 .649 OF_41 1.000 .649 OF_42 1.000 .656 OF_43 1.000 .656 OF_44 1.000 .720 OF_45 1.000 .577	OF_24	1.000	.677
OF_27 1.000 .613 OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .578 OF_32 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .627 OF_38 1.000 .637 OF_38 1.000 .690 OF_41 1.000 .621 OF_41 1.000 .649 OF_42 1.000 .649 OF_43 1.000 .577	OF_25	1.000	.680
OF_28 1.000 .669 OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .578 OF_32 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .627 OF_35 1.000 .637 OF_36 1.000 .637 OF_37 1.000 .690 OF_38 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .576 OF_44 1.000 .656 OF_45 1.000 .577	OF_26	1.000	.562
OF_29 1.000 .610 OF_30 1.000 .638 OF_31 1.000 .578 OF_32 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .637 OF_37 1.000 .690 OF_38 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .613 OF_43 1.000 .577	OF_27	1.000	.613
OF_30 1.000 .638 OF_31 1.000 .578 OF_32 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .677 OF_37 1.000 .690 OF_38 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .577 OF_45 1.000 .577	OF_28	1.000	.669
OF_31 1.000 .578 OF_32 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .637 OF_37 1.000 .690 OF_38 1.000 .690 OF_38 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .577 OF_45 1.000 .577	OF_29	1.000	.610
OF_32 1.000 .565 OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .767 OF_37 1.000 .690 OF_38 1.000 .588 OF_39 1.000 .621 OF_40 1.000 .613 OF_41 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .577	OF_30	1.000	.638
OF_33 1.000 .626 OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .767 OF_37 1.000 .690 OF_38 1.000 .658 OF_39 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .656 OF_43 1.000 .577	OF_31	1.000	.578
OF_34 1.000 .620 OF_35 1.000 .637 OF_36 1.000 .767 OF_37 1.000 .690 OF_38 1.000 .588 OF_39 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .656 OF_43 1.000 .577	OF_32	1.000	.565
OF_35 1.000 .637 OF_36 1.000 .767 OF_37 1.000 .690 OF_38 1.000 .588 OF_39 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .556 OF_44 1.000 .577	OF_33	1.000	.626
OF_36 1.000 .767 OF_37 1.000 .690 OF_38 1.000 .588 OF_39 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .556 OF_44 1.000 .577	OF_34	1.000	.620
OF_37 1.000 .690 OF_38 1.000 .588 OF_39 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .577	OF_35	1.000	.637
OF_38 1.000 .588 OF_39 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .577	OF_36	1.000	.767
OF_39 1.000 .621 OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .577	OF_37	1.000	.690
OF_40 1.000 .685 OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .720 OF_45 1.000 .577	OF_38	1.000	.588
OF_41 1.000 .613 OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .720 OF_45 1.000 .577	OF_39	1.000	.621
OF_42 1.000 .649 OF_43 1.000 .656 OF_44 1.000 .720 OF_45 1.000 .577	OF_40	1.000	.685
OF_43 1.000 .656 OF_44 1.000 .720 OF_45 1.000 .577	OF_41	1.000	.613
OF_44 1.000 .720 OF_45 1.000 .577	OF_42	1.000	.649
OF_45 1.000 .577	OF_43	1.000	.656
	OF_44	1.000	.720
OF_46 1.000 .558	OF_45	1.000	.577
	OF_46	1.000	.558

OF_47	1.000	.598
OF_48	1.000	.580
OF_49	1.000	.669
OF_50	1.000	.636
OF_51	1.000	.591
OF_52	1.000	.649
OF_53	1.000	.657

Extraction Method: Principal Component Analysis.

Com	nponent	Rotation Sums of Squared Loadings					
	Total	% of Variance	Cumulative %				
1	4.558	8.600	8.600				
2	3.593	6.779	15.379				
3	3.205	6.047	21.426				

4	2.695	5.086	26.512
5	2.577	4.862	31.374
6	2.470	4.660	36.034
7	2.362	4.456	40.491
8	2.001	3.775	44.265
9	1.926	3.634	47.900
10	1.847	3.485	51.384
11	1.803	3.403	54.787
12	1.628	3.072	57.860
13	1.568	2.959	60.819
14	1.427	2.692	63.510

Total variance explained at fourteen stages for factors that lead to gender discrimination and harassment at work place. Fourteen factors were extracted because their eigenvalues is greater than 1. When fourteen factors were extracted, then 63.510 percent of the variance would be explained

a. Rot	ated Cor	nponent	Matrix ^a											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
OF_1							.468							
OF 2							.415							
OF_3									.757					
OF_3 OF_4 OF_5 OF_6							.780							
OF_5									.552					
OF_6							.436							
OF_7				.663										
OF_8												459		
OF_9								.758						
OF_10										.516				
OF_11			405											
OF_12													763	<u> </u>
OF_13									.360					
OF_14					.592									
OF_15										.723				
OF_16	.532													
OF_17		.436												ļ
OF_18		.414												ļ
OF_19			.565											ļ
OF_20			.613											ļ
OF_21				.583										ļ
OF_22			.548											ļ
OF_23		.444												ļ
OF_24			532											ļ
OF_25		.430												<u> </u>

1 19

			-					-				1	
OF_26					.417								
OF_27		.409											
OF_28			.537										
OF_29	.393												
OF_30	.419												
OF_31					.494								
OF_32	.585												
OF_33	.665												
OF_34				.527									
OF_35		.435											
OF_36										.817			
OF_37	.531												
OF_38		.398											
OF_39	.580												
OF_40		.377											
OF_41						640							
OF_42	419												
OF_43					.650								
OF_44		.747											
OF_45		.668											
OF_46	.431												
OF_47										.605			
OF_48													.712
OF_49											.781		
OF_50									327				
OF_51						673							
OF_52							 578						
OF_53												.453	
Extraction							 						
Rotation N					lization.								
a. Rotatio	n converg	ged in 36	iterations	5.									

The factor analysis result revealed that 53 questions can be clubbed into fourteen factors. Thus these 14 factors are further used for the purpose of analysis measuring impact of organizational factors on gender discrimination and harassment at work place. The multicollinearity of the data was checked before going for multiple-regression analysis. The highest value of the VIF is 1.210 which is below 5.000, revealed that the data is not subjected to multicollinearity and multiple regression can be used. To identify key variables of organizational factors having positive impact on gender discrimination and harassment at work place, multivariate regression analysis was done and results shown as under:

Table: 4	4	
Descriptive St	atistics	
	Mean	Std. Deviation
Setting Career Goal	2.2867	.82061
Recruitment Biasness	3.5989	.49696
Exclusionism	3.4543	.67538
Corporate Climate	3.1722	.37351
Recognition	3.3311	.76382
Employee Addressing Issue	3.7842	.60987
Training & Development	2.6917	.80598
Counter Productive Behaviour	3.3733	.74046
Sexual Harassment	3.0300	.49658
Internal Biasness	3.4878	.77651
Salary Gap	3.3078	.46475
Under Estimation of Skills	2.7817	.76493
Networking	2.6900	.56120
Promotion & Appraisals	3.7750	.54577
Multitasking	3.3967	1.05024

Volume : 5 | Issue : 1 | January to June 2017 | ISSN 2319-1740

P	Pearson	Correlati	on												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1.000	473**	649**	338**	463**	489**	.468**	479**	.147**	441**	288**	070	.292**	.044	101**
2		1.000	.586**	.309**	.355**	.639**	357**	.425**	285**	.445**	.385**	130**	164**	.145**	.106**
3			1.000	.435**	.617**	.538**	539**	.528**	210**	.568**	.280**	060	279**	. 006	.104
4				1.000	.220**	.372**	385**	.231**	.005**	.187**	.117**	.019	171**	.021	.078
5					1.000	.383**	334**	.392**	159**	.428**	.215**	.070	198**	111**	.025
6						1.000	360**	.439**	219**	.433**	.548**	144**	302**	.115**	.121**
7							1.000	315**	.017	308**	072	.178**	.276**	.032**	059
8								1.000	140**	.562**	.358**	084	339**	.101**	.041
9									1.000	174**	125**	.125**	.000	123**	020
10										1.000	.262**	053	279**	.044	.071
11											1.000	.058**	144	.127**	036
12												1.000	008**	238**	106
13													1.000	018**	091**
14														1.000	.016
15														1.000	.016

Table: 5 Multiple regressions Analysis

**Significant at 5% level of Significance

					Change	Change Statistics					
				Std. Error	R						
		R	Adjusted	of the	Square	F			Sig. F		
Model	R	Square	R Square	Estimate	Change	Change	df1	df2	Change		
1	.649 ^a	.421	.419	.62525	.421	217.037	1	298	.000		
2	.670 ^b	.449	.445	.61126	.027	14.801	1	297	.000		
3	.683 ^c	.467	.461	.60239	.018	9.807	1	296	.002		
4	.699 ^d	.488	.481	.59091	.022	12.617	1	295	.000		
5	.711 ^e	.505	.497	.58200	.017	10.092	1	294	.002		

a. Predictors: (Constant), Exclusionism

b. Predictors: (Constant), Exclusionism, Employee addressing Issue

c. Predictors: (Constant), Exclusionism, Employee add ressing Issue, Under estimation of skills

d. Predictors: (Constant), Exclusionism, Employee addressing Issue, Under estimation of skills, Training & Development

e. Predictors: (Constant), Exclusionism, Employee addressing Issue, Under estimation of skills, Training & Development, Counter Productive Behaviour

ANOV	/A ^f						
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	84.848	1	84.848	217.037	.000 ^a	
	Residual	116.499	298	.391			
	Total	201.347	299				
2	Regression	90.378	2	45.189	120.944	.000 ^b	
	Res idual	110.969	297	.374			
	Total	201.347	299				
3	Regression	93.936	3	31.312	86.289	.000 ^c	
	Residual	107.410	296	.363			
	Total	201.347	299				
4	Regression	98.342	4	24.585	70.411	.000 ^d	
	Residual	103.005	295	.349			
	Total	201.347	299				
5	Regression	101.760	5	20.352	60.084	.000 ^e	
	Residual	99.586	294	.339			
	Total	201.347	299				

Co	oefficients ^a										
		Unstandar dized Coefficients		Standar dized Coefficients	t	Sig.				Colline Statisti	•
							Correlations				
м	Model		Std. Error	Beta			Zero- order	Partial	Part	Toler ance	VIF
1	(Constant)	5.011	.188		26.595	.000					
	Exclusionism	789	.054	649	14.732	.000	649	649	649	1.00	1.000
2	(Constant)	5.568	.234		23.765	.000					
	Exclusionism	660	.062	543	-10.629	.000	649	525	458	.710	1.408
	Employee addressing Issue	265	.069	197	-3.847	.000	489	.218	166	.710	1.408
3	(Constant)	6.063	.280		21.669	.000					
	Exclusionism	656	.061	540	-10.717	.000	649	529	455	.710	1.409
	Employee addressing Issue	293	.068	218	-4.286	.000	489	242	182	.698	1.433
	Under estimation of skills	144	.046	134	-3.132	.002	070	179	133	.979	1.022
4	(Constant)	5.209	.365		14.276	.000					
	Exclusionism	550	.067	453	-8.198	.000	649	431	.341	.569	1.758
	Employee addressing Issue	274	.067	204	-4.079	.000	489	231	170	.693	1.442
	Under estimation of skills	171	.046	159	-3.726	.000	070	.212	155	.953	1.049

The final Regression model with 5 independent factors (exclusionism, training & development, employee addressing issue, under estimation of skills, and counterproductive behaviour) entered because it has explained almost 49.7% of the variance for positive impact of organizational factors on women career advancement. Also, the standard errors of the estimate has been reduced to .58200, which means that at 95% level, the margin of errors for any predicted value of Women's Career advancement can be calculated as ± 1.14072 (1.96 X .58200). The four regression coefficients, plus the constraints are significant at 0.05 levels. The impact of multi-collinearity in the factor is substantial. The Eigen value more than zero point one was the reason for including the factor in the equation while the other factor has it below zero point one thus it has been excluded.

The ANOVA analysis provides the statistical test for overall model fit in terms of F Ratio. The total sum of squares (201.347) is the squared error that would incurred if the mean of organizational factors has been used to predict the Women's career advancement (dependent variable). Using the values of exclusionism, training & development, employee addressing issue, under estimation of skills, and counterproductive behaviour this error can be reduced by 50.54% (101.760/201.347). This reduction is deemed statistically significant with the F ratio of 60.084 and significance at level of 0.000e. With the above analysis it can be conclude that five factors i.e., exclusionism, training & development, employee addressing issue, under estimation of skills, and counterproductive behaviour explains the positive impact of organizational factors on gender discrimination and harassment at work place.

Whether we see past or present, situation is same. Women are excluded from social network. The networking by women or with women is seen with the negative eye or we can say with bad eye. Women are excluded from the team as they are considered as a creator of problem not the solver. But in real world, they are real solver. They fight with every problem to reach their career point. If a lioness enters into a cave of lion, they are thrown out by harassing them. The rigid policy of organization, recruitment gaps acts as a glass wall for career orientated women. Policies are framed as per the need of the men but no provisions are there in favour of women like flexible working time, working from home, maternity leave. Nowadays the provision of maternity leave are made compulsory by the government, but still only very few organization are providing them or we can say incorporating in organization. Organization doesn't expect anything from women as they are consider being less committed. Organization feels that they would leave their job for the sake of child nurturing and motherhood. No career rotation, training and development programme are organized for the growth of women. Women lack mentor and training facilities for the career growth. Proper training and development programme are planned for the growth of the men where as being less committed women are excluded from all Company doesn't want to invest in the women career. Only few women have reached top position so woman doesn't find senior manager to facilitate their career chart. A woman with the skills and knowledge doesn't get the chance to showcase their skills. Due to assumption of less committed and counterproductive behavior, they are not allowed to lead team or to be part of visible task. Women find no place during the time of promotion and growth. The organization never pays attention on growth of the women as men can never see a woman at same or higher position. Due to male ego women are allowed to lead team as their ego get hurt when a women guide, instruct and commend them. The level of efficiency required for a particular job is determined on the basis of gender. Percentage of efficiency required from the female is double than that of male which create a problem. Stress and internal climate affects the result of women, this lead to demotion from the position. To create problem promotions are offered where relocation is needed. Women due to family responsibility could not be able to accept the promotion. Some position like CEO, MD are seen a male commanding. If by performance and efforts women reaches at that place than they need to spend more time to meet the work and responsibility which affect their personal life. Harassment

by co person lead to demotivation which makes them to quit their jobs. The career chart goes down fall. Many women are still faces harassment and spend more time for the promotion but after being promoted they are paid less than men at the same post.

CONCLUSION

Exclusionism, Employee addressing Issue, under estimation of skills, Training & Development and Counter Productive Behaviour explains the positive impact of organizational factors on women career advancement. The analysis of the variable stated that a woman faces the problem due to organizational culture. Cultures of organization play a very important role in growth of women in career. Women faces a recruitment gap, women are giving the places left out after giving to men. Organizations consider women to be less committed. The assumption stops the recruiter from giving position too women in organization. The reason for selection of the above factors is that the rigid policy of organization, recruitment gaps acts as a glass wall for career orientated women. Women play a dual role, which lead them to sacrifice for the sake of family and child care. An organization policy doesn't favour women. Policies are framed as per the need of the men but no provisions are there in favour of women like flexible working time, working from home, maternity leave etc. The corporate never focus nor pay attention on growth of the women as men can never see a women at same or higher position Men always enjoy favoritism. Women are excluded from discussion for the growth of organization. The idea and suggestion of women are not considered. Due to male ego women are not allowed to lead their team as ego of men gets hurt when a woman guides, instruct and commend them. A male boss promotes the male in which he can see his qualities. A male boss wants a male to handle his responsibilities. Due to biasness of the promoter women with caliber and ability are not being promoted for higher post. Women lack training and development programme for their growth and develop their career. Organizations consider women as a resource with no out come so they don't want to invest in the training of the women. Skills of women are under estimated due to break in their career because of maternity period. The level of efficiency required for a particular job is determined on the basis of gender. Percentage of efficiency required from the female is double than that of male which create a problem. On the other hands other variables were rejected which were

important and created a factor but their combined impact was very less.

Gender discrimination and harassment exist at workplace and in order to overcome women only need to take first step for their betterment. First step is to change the attitude of the society by creating awareness of right of equality and practice them too, in which government and law should actively participate. Women should built and showcase their skill which will help them in building a strong reputation at workplace. Networking of women within and outside the organization would provide them platform to connect to women who have reached at the top after breaking a glass wall. The challenging task should be accepted by women in which senior would act as a mentor and provide guidance to them. They should also try to absorb the masculine attribute and Organization should bring strategies encourage women to be a leader and play the leadership roles. World is changing to new place (era) and in a same way organization should change their rigidity towards the gender. The ceiling of glass can be broken by empowering to women. Proper evaluation technique should be used for promotion in which review of all peer, superior should be consider. Government should frame strict anti discrimination law which should be implemented with due care. Fair equality is remuneration and promotion would lead to increase in commitment towards organization which would reduce absenteeism and turnover in organization.

REFERENCES

• Adams, S. M., Gupta, A., Haughton, D. M., & Leeth, J.

D. (2007). Gender differences in CEO compensation: Evidence from the USA. Women in Management Review, (22, 3), 208-224.

- Arulampalam, W., Booth, A., & Bryan, M. (2004). Is There a Glass Ceiling over Europe? Exploring the Gender Pay Gap Across the Wage Distribution. Retrieved July 10, 2010 from: http:// www.iser.essex.ac.uk / files / iser_working_papers /2005-25.pdf.
- Assocham, (2008). Being Brighter academically, 3.3% Women Make for CEO's, January, 23, 20-28.
- Bruckmuller, S., Ryan, M. K., Rink, F. and Haslam, S. A. (2014). Beyond the Glass Ceiling: The Glass Cliff and Its Lessons for Organizational Policy. Social Issues and Policy Review, 8(1). 202–232.
- Excimirey, A. A. M. (2013). What are the Glass Ceiling barrier Effects on Women Career. International Journal of Business Management, 8(6):1833-3850.
- Hindustan Times Business. (2008). The glass ceiling and the Indian corporate woman, Press Release, 26.
- Maheshwari, K. (2012). The Glass Ceiling impact on Indian Women Employees. National Conference on Emerging Challenges for Sustainable Business, 1071-1080.
- Mohapatra, M. (2017). Gendered tapes: a study into vocational choice influencers and impactors. International Journal of Management Practice, 10(2), 189–202.
- Parikh, I. J. & Kollan, B. (2003). Women Managers from Myths to Reality, Journal Indian Institute of Management, working paper no. 2004-03-06, 15.